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We study the fundamental challenge of fermion Monte Carlo for continuous 
systems: the fermion "sign problem." In particular, we describe methods that 
depend upon the use of correlated dynamics for ensembles of correlated sets of 
walkers that carry opposite signs. We explain the concept of marginally correct 
dynamics, and show that marginally correct dynamics that produce a stable 
overlap with an antisymmetric trial function give the correct fermion ground 
state. Many-body harmonic oscillator problems are particularly tractable: their 
stochastic dynamics permits the use of regular geometric structures for the 
ensembles, structures that are stable when appropriate correlations are intro- 
duced, and avoid the decay of signal-to-noise that is a normal characteristic of 
the sign problem. This approach may be a guide in the search for algorithmic 
approaches to calculations of physical interest. 
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I. I N T R O D U C T I O N  

An effective solution to the general quantum Monte Carlo fermion problem 
has remained elusive. The ideal algorithm would have properties similar to 
the standard boson quantum Monte Carlo solutions: (a) results that 
converge to the correct fermion ground state values and (b) error bars that 
decrease like t -1/2 for computational time t. Most current algorithms can 
be divided into two classes that either satisfy criterion (a) or (b) but not 
both. 
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As usual, we use the term walker to describe a set of positions for all 
the particles; that is a single sample of a many-body function. An ensemble 
of walkers represents a many-body function, 

F(R) = ~ O(R- Rk), (1.1) 
k 

where R in the argument of the Dirac delta function represents the coor- 
dinates of the N particles and the Rk the corresponding walker position for 
walker k. The Monte Carlo algorithm propagates the walkers to new 
positions, generating a time-dependent many-body function. 

The fixed node and transient estimation methods are commonly used 
to get approximate fermion ground states. (~) In both fixed node and 
transient estimation the calculation can begin by sampling an initial set of 
walkers from the positive part of a trial function, or by sampling from the 
absolute value of the function, and assigning positive and negative weights 
to the delta functions corresponding to the functions sign at the walker 
position. In transient estimation, the exact Green's function is used to 
propagate the walkers, i.e., correct dynamics are used, so criterion (a) is 
satisfied; the positive and negative populations of walkers evolve exactly as 
they would if each represented the equivalent bose case since the exact 
imaginary time propagator from time t~ to t2exp(- (H-Eo)( t2- t~) ) ,  
where Eo is the fermion energy is used. Matrix elements with properly 
antisymmetrized wave functions will necessarily project out only the 
fermion wave functions. The method therefore converges to the fermion 
ground state, but the expectations quickly become the average of a small 
signal and a large fluctuating noise since the walker population grows 
exponentially. The amount of computer time to improve the error bars also 
grows exponentially, so criterion (b) is not satisfied. Conversely, fixed node 
calculations where the walkers are not allowed to cross the nodes of the 
trial wave function, are stable, and satisfy criterion (b). The fixed node 
constraint does not allow convergence to the correct fermion answer unless 
the nodes are the exact nodes, so criterion (a) is violated. 

Our approach is to explore a class of algorithms where the motion in 
imaginary time of several walkers is correlated in such a way that the 
dynamics satisfies both (a) and (b). The algorithms converge to the exact 
fermion ground state, and they have error bars that decrease as t -~/2, 
Unlike transient estimation the matrix elements with properly antisym- 
metrized wave functions are stable with a stable signal to noise ratio. The 
trade off is that our analysis and implementation of these algorithms is 
currently only applied to harmonic oscillator systems. The development of 
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algorithms using these ideas on realistic physical systems is a high priority 
that we are working on, but has not yet met with success. 

The basic ingredients of our algorithms are contained in Kalos t2) 
(MHK) and to some extent in Liu, Zhang, and Kalos (3) (LZK), which 
focussed on pairs of interacting walkers carrying opposite signs or weights. 
Both papers introduced correlated stochastic dynamics for pairs of random 
walkers in which the marginal behavior of any one walker was exactly the 
same as if the partner were absent. 

Both LZK and MHK showed how correlated pairs could produce 
Monte Carlo distributions satisfying both criteria (a) and (b) above. 
Matrix elements with antisymmetric wave functions were stable, and exact 
results could be projected out from which eigenvalues and other physical 
results could be obtained. LZK showed how purely geometrical correla- 
tions could solve an ultra-simplified model problem, the Schr6dinger Equa- 
tion in a parallelogram or in a hypercube. MHK treated another class of 
model problems, generalized harmonic oscillators in two dimensions, and 
used correlated walkers in the framework of diffusion Monte Carlo. A key 
idea in the Iatter paper is that using different correlations depending upon 
the position and orientation of a pair of walkers can, in principle break the 
"plus-minus" symmetry that lies at the heart of the fermion sign problem. 
This symmetry and some methods to break it are described in Section II. 

The study of model problems has been extremely fruitful in under- 
standing the role of different dynamics, and of symmetries, especially 
many-dimensional symmetries. In this paper, we continue the discussion of 
such models, now including twelve-dimensional (or four-body) harmonic 
oscillators. In addition to the questions that we have asked of these model 
problems in the past, we will use them to develop insight about the scaling 
of the algorithmic complexity with particle number. 

It turns out that several of the approaches being considered work 
particularly well for harmonic oscillators in one or several dimensions. 
Diffusion Monte Carlo methods are particularly easy to understand and 
program, but typically use a short time approximation and therefore have 
a time step error; exact results are only obtained by extrapolating to zero 
time step. In the appendix and Section II we show that the exact harmonic 
oscillator propagator has the same form as the usual short time 
approximated diffusion Monte Carlo method. This allows us to analyze 
and test our algorithms without the additional time step error. As 
described later in Section II the diffusion Monte Carlo algorithm consists 
of drift, diffusion, and branching steps. The use of the exact harmonic 
oscillator propagator simply modifies the details of these steps. The major 
features of the steps are determined by the "importance function" applied 
to the distribution. We use here the spatially symmetric boson-like ground 
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state as the importance function, for several reasons. One is that with that 
choice, there is no spatially dependent branching, so that pairs or other 
ensembles of walkers can propagate as a unit, rather than breaking up and 
being reformed. Another important reason is that pairs or other ensembles 
having particular shapes and orientations are helpful in breaking the "plus- 
minus" symmetry. The particular form of "drift" implied by the ground 
state of a harmonic potential preserves such shapes and orientations; we 
can also arrange to preserve them by appropriate correlations in "diffu- 
sion" steps. Using these invariants, creating stable dynamics for a number 
of states turns out to be easy. This use of a spatially symmetric importance 
function in no way implies that we are generating solutions to ground 
state problems: the use of equal numbers of oppositely signed walkers 
guarantees orthogonality of the solutions to the ground state. 

Preservation of invariant shapes and orientations is, of course, a mixed 
blessing: on one hand one can see immediately the ingredients necessary for 
stable fermion Monte Carlo in these situations. On the other hand, the task 
remains of translating the constructions that work for harmonic oscillators 
into effective algorithms for problems of physical interest. 

A conjecture made previously is shown to be correct: if correlated 
dynamics gives a stable overlap with an antisymmetric test function, and if 
the marginal dynamics for any single walker is correct, then that overlap 
is the same as the one that would be obtained with the lowest anti- 
symmetric wave function. "Correct marginal dynamics" means that the 
dynamics for a single step of any walker is indistinguishable from what it 
would have been with correct dynamics. However, we include in each step 
a possible cancellation between positive and negative walkers. 

The transformation that maps the solution of the Schrrdinger equa- 
tions with pair-wise harmonic oscillator potentials to central harmonic 
oscillator potentials is given explicitly. It provides a motivation for solving 
central harmonic oscillator problems that describe three- and four-body 
fully spin-polarized systems. The constructions are easiest when four or 
eight walkers are correlated, but we show how correlated pairs can be used 
throughout. This will provide some insight on complexity scaling. 

II. CORRELATED DIFFUSION OF ENSEMBLES 
OF SIGNED WALKERS 

Green's function and diffusion Monte Carlo deal with ensembles 
of walkers {Rk} that are usually treated as independent, except for the 
correlations that arise from branching processes and possibly from popula- 
tion control. 
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As mentioned in the introduction, to describe functions that are 
both positive and negative, we introduce sets of signed walker positions 
{R~-, R[} .  Thus (without any importance sampling) we represent the 
antisymmetric wave function as 

ffa(R) = ~ [ 6 ( R -  R[)-O(R- R;)]. (2.1) 
k 

We may calculate the overlap with some antisymmetric test function 
fa(R) as 

I fa(R) ~lca(R) dR=~ [fa(R~)- fA(R;)]. (2.2) 
k 

A stable and efficient method must produce ensembles where walkers with 
positive weights R~ remain mostly in regions OA >0 and R~- stay mostly 
where 0n < 0. Imposing the fixed-node constraint on the walkers has an 
analogous effect--namely that R~ exist only where Oar(R)>0 for some 
trial antisymmetric function. 

Unfortunately, most stochastic dynamics, especially those that treat 
walkers as independent have symmetric solutions as their asymptotic 
distributions--those for which the overlaps computed by Eq. 2.2 decay 
exponentially to zero. More generally, if the algorithm obeys the "plus- 
minus symmetry" in which an interchange of all of the plus and minus 
labels on the walkers leaves the dynamical rules unchanged, then there will 
be an exponential decay of the overlap signal (and an exponential decay 
of signal to noise.) Transient estimation clearly obeys this plus-minus 
symmetry; while the fixed node approximation breaks it. 

Thus, to have an exact algorithm without signal to noise decay, one 
must consider correlated dynamics. The simplest sets to use are pairs of 
plus and minus walkers. We will give some attention to the question of 
whether one needs larger ensembles for the model problems discussed here. 

MHK pointed out that various classes of correlations are very easy to 
introduce with the framework of importance-sampled diffusion Monte 
Carlo. We repeat some of the exposition that was given there. 

Importance sampling seeks to generate ensembles of walkers that have 
the distribution 

fiT(R) ~(R) (2.3) 

rather than simply O(R), for some 0r(R). 
Ceperley derived a general approximate set of dynamical rules to carry 

this out which are described in ref. 4. For a finite time interval &: a walker 
at R is moved according to the following three steps: 
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Drift: a walker is moved to R d with 

Ra = R + ~r Vr r(R) 
0T(R) (2.4a) 

Diffusion: a walker is moved to R' with 

R' = R d + a U  (2.4b) 

where for an N-body system, U is a 3N-dimensional vector, each of whose 
components is an independent normal random variable with mean zero 
and variance one. Appropriate values of tr are discussed below. 

Branching: each walker becomes M walkers where ( M ) ,  the expected 
value of M, is 

< M> = exp{ - g r [  He  r/ff T-- ET] } (2.4c) 

where H is the hamiltonian of the system, and ET is some trial eigenvalue. 
An alternative to branching, which we will use later in our analysis, is to 
attach a weight W to each walker so that the last step is replaced by: 

W---, W exp{ - ~ r [  H~, r/~' T-- ET] } (2.4d) 

In Ceperley's approximate treatment, tr is given by 

tr 2 = Jr. (2.5) 

In most applications of these ideas to antisymmetric states, fiT(R) is 
itself taken to be antisymmetric. Here, by contrast, we take it to be the 
symmetric ground state: 

~T(R)  = ~o(R) = exp( -- R2/2) (2.6) 

The motivation (cf. MHK) is that it leads to dynamics in which pairs 
(or other ensembles) are preserved. This will be particularly striking for the 
harmonic oscillator model systems considered here. 

When the form of Eq. 2.6 is used for ~kr(R), then Eq. 2.4a describing 
the drift becomes: 

Rd -- ( 1 -- &c) R (2.7) 

We show in the appendix that an exact finite time Green's function for 
diffusion Monte Carlo importance sampled with the harmonic oscillator 
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ground state can be written. It has the same structure as Eqs. 2.4 and 2.7 
except that the drift term is now 

R d --  e - a ' R  = p R  (2.8a) 

and 

a 2 = ( 1 - e-zoo)~2 = ( 1 - p2)/2 (2.8b) 

Finally, when d / r ( R ) = ~ o ( R ) ,  H ~ T / @ r = N / 2 ,  so that the branching factor 
or weight multiplication factor is a constant. We will take E r  to be the 
excited state eigenvalue. 

Eq. 2.8a prescribes simply a rescaling of all coordinates by a constant 
factor: that means that geometrical shapes and orientations of correlated 
ensembles are "preserved in drift steps. Pairs remain pairs with the same 
direction. Parallel pairs remain parallel pairs. Drift preserves ensembles of 
parallel squares as such. 

The fact that a 2 is a constant permits us to relate the vectors 0 in 
simple geometric ways in a correlated ensemble. Thus, for a pair { R,~, R,~} 
after drift, we may set 

0~  = 0~  (2.9) 

to get "parallel dynamics," in which again geometrical shapes and orienta- 
tions are preserved. For a pair, an alternative to Eq. 2.9 is "reflected 
dynamics" defined in the following way: 

Let 

i f =  R S , -  R ~  (2.10a) 
I R & - R & I  

(2.lOb) 

This transformation produces isotropic random vectors 0 [  with the 
property that 10[  12= I G~ 12; they are reflected in the figure that bisects 
the line from R& to R~.  

Another important kind of dynamics uses the correlation of Eq. 2.10 
but carries out cancellation based on the subtraction of the gaussian 
kernels that describe the diffusion for a pair of opposite walkers. 

Gpair (R  ) = { exp[ - ( R  - R~ )2/(2a2)] - exp[ - ( R  - R/)2/(2a2) ] } ~(2ha2) 3N/2 

(2.11) 
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Where Gpa~r(R) > 0, new points R + may appear; when Gp~,(R) < 0, they do 
not. Similarly, new R -  appear only where Gp,,~,.(R)<0. Note also that 
Gp,,~r(R) maps into its negative on reflection in the line (or plane or hyper- 
plane) that is the perpendicular bisector of the line from R~ to R a . New 
points R § and R -  may be taken as reflections of each other, preserving the 
orientation of pairs. We call this "Reflection Dynamics with Cancellation," 
or simply "RC" dynamics. Generalizations will be given below, as needed 
for specific states. 

Creating the necessary correlations within an ensemble by simple 
transformations of 0, as we have done, ensures that the collective dynamics 
of the ensemble is marginally correct: each walker by itself is subject to a 
diffusion step drawn from a correct gaussian, as if no other walkers were 
present. Cancellation implicit in the use of Gpai,.(R) does not change the 
average behavior of the density that follows from the descendents of that 
walker. 

One more introductory technical comment concerns the generalization 
of Eq. 2.2 when importance sampling with ~0(R) is used. The general form 
of an overlap integral becomes: 

f fA(R) ~A(R) dR= f[I IR)l 0A(R) aR (2.12a) 

= E [ ~o(R~)-Oo(RZ"~~ (2.12b) 
k 

Iii. STABLE CORRECT A L G O R I T H M S  

It is necessary that any correlations between walkers introduced in the 
interests of stability not modify the desired solution of the Schr6dinger 
equation. 

A transient estimate calculation ~1) begins by sampling positive and 
negative walkers from the positive and negative parts of a fermion trial 
wave function. Both populations are then propagated using the same 
dynamics as in the usual Bose ground-state calculation. Expectation values 
require computing the overlap of the resultingpopulation with an antisym- 
metric trial function, usually the same as the original trial function. As is 
well known, the result is unstable in the sense that the overlap and 
the signal-to-noise ratio decay exponentially to zero. However, since the 
correct Green's function is used, the results are correct on the average if the 
signal can be extracted at long enough times. 
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Thus, in transient estimation, any single walker obeys the correct 
dynamics. To make a stable algorithm, we need to modify the dynamics 
without destroying the correctness of the results. That is to say, the overlap 
integrals must have the same Monte Carlo expectation values as given by 
the original dynamics. One modification is to cancel walkers. If a pair of 
walkers, one positive and one negative, are at exactly the same point, their 
contribution to all expectation values cancel at all future times. The pair 
can therefore be dropped from the calculation without changing the 
average values of any overlap integrals. This means further that pairs of 
walkers can be omitted with the probability that they move to the same 
point. Arnow et aL ~5) exploited this simple cancellation idea to solve some 
model few-body problems; however, cancellation alone does not break the 
plus-minus symmetry and does not produce algorithms that scale well with 
the number of particles. Exponentially large populations are required as the 
number of particles increases. 

A second ingredient is correlated dynamics. Ignoring cancellation for 
a moment, we get correct answers if, when we view any single walker alone, 
its dynamics are unchanged. The computation of overlap integrals is linear 
in the density of random walkers; correlations between walkers do not 
change the Monte Carlo expectations. In the examples of Section II, walker 
pairs make correlated moves since the diffusion steps use correlated 
gaussian variables, but each walker seen alone executes the same walk that 
it would in the absence of the other, and therefore gives correct overlaps. 
As mentioned before, we call such dynamics marginally correct. More 
generally, any expectation value calculated with an ensemble of walkers 
with marginally correct dynamics will be correct. 

Thus, the inclusion of cancellation in the correlated dynamics also 
yields a correct algorithm; the expectations of overlap integrals remain 
unchanged. If we combine correlated dynamics with cancellation, we can 
develop stable algorithms. When the correlated dynamics are marginally 
correct and give a stable overlap with an antisymmetric trial function, the 
signal to noise ratio does not decay, and the results must be correct. 

IV. ONE-DIMENSIONAL HARMONIC OSCILLATOR 

It is instructive to analyze completely the dynamics of pairs for the 
one-dimensional harmonic oscillator, Consider first the case of parallel 
dynamics for a pair, {x~, Xo}. We assume a series of time steps with 
constant fi~:. Drift steps transform x into e-6~x=px.  Parallel dynamics 
mean that positions of both the plus and minus walkers after drift are 
incremented by the same gaussian u, with mean zero and variance 
( 1 - p2)/2. Then 
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x~ ---, px~ + u, --,. pEpx~ + u,]  + u2-." --* pkx~- 

k k - - 1  

+ ~ pk-lut ~ . . .  ~ lim Y' p"Uk_,, 
1=  1 k--* ~ n = O  

X o  ~ PXo  + Ul ~ p [ P X o  + Ul] + u2-" ~ p k x  0 

k k - - 1  

+ ~ p k - t u  t ~ . . .  ~ lim ~ pnUk_ n 
1=1  k..-. oo n = O  

(4.1a) 

(4.1b) 

+ and x~- decreases by a Thus 6Xk, the relative distance between x k 

factor p after each drift step: 

OXo = x ~  - x o --. e -as JXo ~ e -2a" 6Xo ~ e - 3 6 r  OXo "* " "  e -~ 6Xo (4.1c) 

after total imaginary time 3. Finally, we attach a weight to each pair; that 
weight is multiplied by the factor e a" instead of branching. The latter factor 
takes account of the difference between the eigenvalue of the first excited 
state (3/2) and the ground state (1/2) from which the "local energy," 
H~o/q;o,  is computed. Thus an initial weight Wo is transformed 
successively into: 

14Io ~ ea" Wo ~ e2a~ Wo ~ e3a~ Wo ~ "'" e" Wo (4.2) 

The product 6X k W k is constant, equal to 0% Wo. 
As Oxk ~ 0, the pair reduces to a point whose position has the dis- 

tribution ~,Zo(X), since by construction the marginal dynamics for either 
point {x~, x~-} is that which gives the ground state fro(x) modified by the 
importance function fro(X), i.e., exp(-x2).  This result can also be seen by 

+ ~ x~-. Each inspection of Eqs. 4.1a and 4.1b. They show explicitly that x k 

is seen as a sum of gaussian random variables weighted with p". The sums, 
• i.e., the values of x k , are then also gaussian random variables with mean 

zero. The variance of the limiting distribution is (1 -p2) /2 .  Y'.~ p2n= 1/2. 
That is, the distribution is again exp(-x2).  

The overlap of any antisymmetric function fA with the solution 
generated by the pairs is therefore: 

f O,,(x) dx = f A(x) Co(X)  o(X) O (x)dx 

[ f a ( x ~ )  f a ( x ; )  ] 

= E wk L TO-j( 3- 
k 

(4.3) 

(4.4) 
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d [fA(x) ] (4.5) 
--' E w~ ,~x,, ~x L Oo(X) 

k 

r } r (x) dx 

= -2  ,~xo Wo f [ f A(x) ] ~o(X) d r ~x r176 dx 

= 2Xo Wo f f A ( x )  xe -~/2 dx, 

(4.6) 

(4.7) 

exactly the fight answer. 
Thus, for this simple problem, parallel dynamics is asymptotically 

stable and exact. 
When "reflected dynamics with cancellation" (RC) is applied to this 

problem, the only change is that at the "diffusion" step, equal and opposite 
gaussian increments are added to x + and x - ,  respectively. The sum Xk = 

+ 
Xk + Xs  is unchanged by the diffusion, but is decreased by e -6~ at every 

+ + ~ exp( - k 5r), and drift. Since x k > x f f  remains true throughout, x k ~ 

- + ( 4 . 8 )  X k ~ - -  X k 

The equilibrium distribution of signed walkers generated by these rules 
satisfies the following equation: 

- -  [ x - -  p z ] 2 / ( 2 a  "2) _ _  e -  t x + pz  ]2/(2at 2) 

x(xl = e~ f e 
~ 2 n a  2 

a 2 = [ 1 - exp( - 2dr) ]/2 = ( 1 - p2)/2 

Z ( z ) d z  (4.9) 

(4.10) 

The fact that the "source" positions in the two gaussians are negatives 
of each other follow from the asymptotic behavior indicated by Eq. 4.8 
above (or equally for all steps if the initial values satisfied x o = -x~- . )  

dr The factore in front reflects the growth in population or weight from 
branching. The factor p in the exponents of the gaussian terms reflects the 
shift of the source positions because of the drift. 

The expression 

Z(x)  = xe  -x~ (4.11) 

is a solution of Eq. 4.9, and is again, the exact (first) antisymmetric wave 
function for a harmonic oscillator in one dimension, with an extra factor 
r from importance sampling. 

! 822~ 89/1-2-29 
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We note also that one can mix the dynamics, using parallel dynamics 
with probability p, and RC dynamics with probability 1 - p l  I. This 
combination works for any value of P II" 

Of course, finding antisymmetric solutions in one dimension, even by 
naive Monte Carlo methods, is no challenge: here as always, the nodal 
point is at x = 0, and that fact can be used as a boundary condition to get 
the exact solution. It is important to observe, however, that for parallel or 
for mixed dynamics, the walkers do not respect the nodal point restriction, 
so that we have a generalization of the fixed-node condition. 

V. TWO-DIMENSIONAL HARMONIC OSCILLATOR 

The generalization of the methods of the previous section to find 
antisymmetric solutions of the form 

~o~(X, y ) =  ye - ( : + : )  (5.1) 

is immediate and uninteresting. This was already discussed in MHK. One 
simply uses pairs of walkers, { f'+, f -  } with 

x + = x - ;  y+ > y -  (5.2) 

Parallel, RC, and mixed dynamics, all preserve these conditions, and the 
distributions in x and y are independent; the distribution in x is that of the 
ground state in one dimension, and that in y is that of the corresponding 
first excited state. 

On the other hand, if we seek the solution 

O i l ( X ,  y) =xye_(~+ y2)/2, (5.3) 

something new is needed. 
Following the development of Eqs. 4.3--4.7, we have 

~2 
xye -(~ + )2)/2 -~'-- " - - ' - - - - -  e -('~ + r2)/2. (5.4) 

ax ay 

We surmise, therefore, that a quartet of walkers, { F~-, F;-, r~ + , F~-} with 

x'~ = xi- ; Yi- < Y~ (5.5a) 

x~ <x~- ; Y~ = Yi- (5.5b) 

x~- = x~ ; y~- > y~ (5.5c) 

x~ > x~-; y~ = y~- (5.5d) 
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will be stable and give the correct solution for parallel dynamics (in which 
all four walkers are given the same two-dimensional gaussian increment.) 

Both drift and parallel diffusion transform a rectangle into another 
rectangle with the same orientation: drift determined by the ground state 
of a harmonic oscillator shrinks a rectangle into a smaller one, and diffu- 
sion in which all walkers move with the same gaussian vector simply dis- 
places the drifted rectangle. Furthermore, the shrinking of those rectangles 
to a point goes on as in one dimension, so that the replacement of the sums 
and differences of estimators by derivatives is the same as in one dimension. 
Hence, integration by parts leads once more to the correct excited state. 

Reflected dynamics may be introduced much as in one dimension, 
provided we reflect in the y and x axes in turn. That is, if { u~, Uy} are two 
gaussian random variables with mean zero and variance (1-p2) /2 ,  then 
one increments the positions of the four walkers after drift in the following 
pattern: 

x ~ ' = x ~  +ux; y ~ ' =  y ~  +Uy (5.6a) 

x~- = Xdq + Ux; y ' f  = yd~ -- Uy (5.6b) 

x ~  = x~" 2 -- Ux; Y ~  = Y ~ 2 -  Uy (5.6c) 

x 2 = Xd-" 2 -- U~; Y 2  = Yd~ + Uy (5.6d) 

These correlated diffusions also transform a rectangle into another with the 
same orientation. Finally, we remark that when the gaussian kernels that 
describe the diffusion are added up with appropriate signs (the obvious 
generalization of Eq. 2.11 ) as is appropriate for cancellation, the composite 
kernel is positive or negative in quadrants defined by the center of the 
rectangle of source positions, and simply changes sign on reflection in coor- 
dinate axes that pass through that center. Hence we may correctly select 
correlated post-diffusion coordinates for the four walkers that also lie on a 
rectangle with the same orientation. We expect, therefore, that reflected 
dynamics with cancellation will also be stable and accurate, and this is 
indeed the case. 

It appears that this state requires a quartet of walkers for stability. 
That is not the case. We consider pairs that are oriented either vertically: 

x + = x -  >0 ;  y+ = - - y -  >0  (5.7a) 

x + = x -  <0;  y+ = - y -  <0  (5.7b) 
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or horizontally: 

x + = - x -  > 0 ;  y+ = y -  > 0  (5.7c) 

x + = - x -  < 0 ;  y+ = y -  <0.  (5.7d) 

These are symmetric about either the x or y axes. One can switch 
between one and the other by reflecting a walker in the origin. Consider a 
vertical pair as in Eq. 5.7a. RC dynamics preserves it as a vertical sym- 
metric pair. Suppose also that x + >  y +, and that we follow it as long as 
this inequality holds. When, however, x + < y + for the first time, transform 
the pair: 

{ (x +, y+ ), (x +, - y+ )} (5.8a) 

into the equivalent horizontal pair 

{(x +, y+ ), ( - x  +, y+ )}. (5.8b) 

and follow it by RC dynamics as long as x + < y +, after which it becomes 
a vertical pair again. 

This modified dynamics, involving pairs only, is stable. 
The process of waiting until a pair crosses the pair of lines 

x 2 = y 2  (5.9) 

can be delicate when 6~ is not extremely small (since the random walk can 
also cross the coordinate axes at the same time.) In principle, this problem 
can be avoided by causing a diffusion process exactly to the boundaries of 
Eq. 5.10, by generating a "first passage" event (as described, for example in 
LZK, Section IV). The outcome is an exact dynamics (no time step error) 
that is stable as well. 

A contrasting situation arises when we consider the state whose nodal 
line is a single circle: 

O2o(f) = ( 1 - r 2) e - r2 /2 .  (5.10) 

A function not orthogonal to this is generated by differentiating twice 
with respect to either x or y. This suggests that four walkers on a line is 
a suitable ensemble to generate solutions like that of Eq. 5.10. The signs are 
distributed differently, namely, as - ,  + ,  + ,  - proceeding along the line. 
A suitable initial arrangement of the walkers would be on the x axis, at 
positions: 

x i- <x ; -  < 0  < x ~ - = - - x ~ "  < x  2 =--xi--  (5.11) 
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As before, drift determined by the harmonic oscillator ground state 
preserves the collinearity of ensembles of walkers. Parallel dynamics does 
the same, as does reflected dynamics with cancellation in which the two 
plus-minus pairs are both reflected in their perpendicular bisectors. 

It is possible to carry this out as well using two walkers rather than 
four. To do that, it is necessary again to use RC dynamics, supplemented 
with a boundary condition that the remaining plus walker be reflected on 
a line passing through the origin and perpendicular to the line joining the 
walkers. 

VI. NINE-DIMENSIONAL HARMONIC OSCILLATOR 

The last and most complex harmonic oscillator state that we treat in 
this paper is that of three particles bound to a center of force by harmonic 
potentials: 

H= [ - V ~ -  V ~ -  V~ + r~ + r~ + r~]/2 (6.1) 

This is equivalent to the problem of three particles with pairwise springs, 
when the origin is taken to be the center of mass, as can be seen from the 
identities 

N 

Z 51 = Z It,- 51 
i < j  i , j  

N 
2 R 2 m )  = N E ( r  i - 

i 

N 

= N ~  15-/~cml 2, (6.2) 
i 

where N is the number of particles and Rcm is the center of mass position. 
We now attach spins of one half to each particle. As usual, with a spin 

independent interaction, we can view up spin particles and down spin par- 
ticles as separate kinds of fermions, and simply antisymmetrize in space 
each spin component separately. The state in which two spins are equal 
requires pairs of walkers starting with the orientation: 

plus xl Yl zl x2 Y2 z2 x3 Y3 z3 (6.3) 

minus Xl - Y l  zl xz Y2 z2 x3 Y3 2"3 (6.4) 

The application of either parallel dynamics or reflected dynamics with 
cancellation preserves the identity and orientation of the pairs, and will 
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therefore give a stable overlap with a test function that contains the p-orbital 
y e x p ( -  R2/2). This is the same construction as has been considered above, 
except for the additional eight dimensions. 

We consider instead the state obtained by attaching equal spins of one 
half to each particle in a fully spin-polarized state. A Slater determinant of 
ground state and p-wave orbitals may be formed: 

~A(R) = [xl(Y2-- Y3) + x2(Y3-- Yl) + x3(yl-  Y2)] exp(-R2/2) (6.5) 

Any of the terms in this function can be obtained from the ground state by 
differentiating with respect to some xi and yj, i # j. We may use x~ and Y2, 
for example. Then introduce four walkers (respectively plus then minus 
cyclically around the figure) arranged initially in a hyperrectangle as 
follows: 

plus xl Yl Zl X2 Y2 2"2 X3 Y3 Z3 (6.6) 

minus - x l  Yl zl X2 Y2 2'2 X3 Y3 2"3 (6.7) 

plus - x l  Yl zl x2 -Y2 z2 x3 Y3 Z3 (6.8) 

minus xl Yl zl x2 -Y2 2"2 x3 Y3 2"3. (6.9) 

The use of parallel or RC dynamics or a mixture will again produce a 
stable and correct overlap with a suitable test function not orthogonal to 
~tA(R). 

As with the two-dimensional case, one may use pairs of walkers if one 
chooses horizontal or vertical pairs according to which is closer. 

It is clear that a four body harmonic oscillator can also be treated in 
the same way. An unpolarized state is an immediate generalization of the 
discussion for p-states given above. A fully polarized state can be treated 
by the next step in the development given just above for Eq. 6.5. Since 
the Slater determinant will now be trilinear, with terms like x~ yzz3, the 
elementary ensemble is an octet. We have not experimented with this 
system, but its stability seems assured. As with previous systems, it also 
seems very likely that stability will be retained with the use of pairs alone, 
when appropriate switching among orientation of pairs is arranged. 

VII. CONCLUSIONS AND PROSPECTS 

We believe that the work described here represents a genuine advance 
in our understanding of the structure of algorithms for fermion Monte 
Carlo. It is true, of course, that harmonic oscillator systems are rather 
special, and that we have exploited aspects of their particular structure. 
From an analytical point of view, the fact that excited states are generated 
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by differentiation is a guide to the selection of useful geometrical shapes of 
correlated ensembles. From the perspective of quantum Monte Carlo, the 
choice of the ground state as an importance function implies a special 
character of the "drift" that permits the shapes to be preserved. We can 
then devise patterns of correlated diffusion that also preserve the shapes. 
The combination breaks the plus-minus symmetry in a special way. 

Used in a straightforward way, these methods lead to ensembles that 
grow exponentially with excitation, but we have seen that in particular 
examples, pairs of walkers are sufficient. This remains to be demonstrated 
more generally, and it also remains to be shown that the use of pairs alone 
gives a method whose computational complexity grows slowly. That is, it 
needs to be shown that the logical work of choosing the right orientation 
for pairs grows slowly, and that the variance does not grow rapidly, when 
pairs are used. 

The most serious work remains, namely, of translating these ideas into 
equivalent or alternative methods that apply to systems of physical interest. 
For few-body systems, e.g., few-electron atoms, the point of view developed 
here is relevant: the triplet state of atomic helium is analogous to the 
excited s-state of the harmonic oscillator discussed here, and the ground 
state of the Be atom can be built from two such states. It is likely that the 
general point of view will also hold: geometrical structures that can be 
made stable with respect to correlated stochastic dynamics will permit 
stable fermion Monte Carlo. We plan to pursue these and additional 
analogs in future research. There are additional kinds of correlated 
dynamics, not discussed in this paper, that can be applied in new problems. 

APPENDIX: THE HARMONIC OSCILLATOR IMPORTANCE 
SAMPLED GREEN'S FUNCTION 

The imaginary time Green's function, p(x, x', ~:), satisfies the Bloch 
equation, 

op 
H p  = -0--~ (A1) 

with the initial condition 

p(x ,  x ' ,  O) = ,~(x - x ' ) .  

In units where h = m = co = 1, the Hamiltonian is 

1 0 2 1 
H = + ~  x :, 

0--~ L 

(A2) 

(A3) 
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and the ground state is 

, ( 
~'o(X) = ~-iTX exp (A4) 

The exact result (6) is 

X 2 dr - X p 2 X X '  
= 1 exp - + . (A5) 

p(x, x', v) x/2rc sinh(l:) 2 tanh(~:) sinh(l:)] 

The importance sampled Green's function is 

@~ exP (2) P(x, x', r) (A6) ~ ( x ,  x '  ; ~) - Oo(X') 

where we have included an exp(r/2) weight factor which corresponds to 
taking the trial energy Er equal to the ground-state energy 1/2. Combining 
Eqs. A4-A6, the result for the importance sampled harmonic oscillator 
Green's function is, 

1 e x p ( ( x - e x p ( - v ) x ' ) 2 )  
~r(x,x', ~ ) = ~ / n ( 1 - e x p ( - 2 ~ ) )  - 1 -exp( -2~ : )  ' (A7) 

which is a gaussian centered on e x p ( - r ) x '  with variance ( 1 -  exp(-2r)) /2.  
The N-dimensional importance sampled Green's function is a product of 
one dimensional Green's functions and has the same form. 
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